Meilenstein auf dem Weg der Effizienzsteigerung von Elektromotoren

David Kolb, wissenschaftlicher Mitarbeiter am LAZ, hat an der Hochschule Aalen eine multifunktionale Pulver-Prozesskammer mitentwickelt. (© Hochschule Aalen | Andrea Heidel).

Multifunktionale Pulver-Prozesskammer am LAZ der Hochschule Aalen entwickelt

Um Elektrofahrzeuge weiter zu optimieren, suchen Forschende weltweit nach neuen Konzepten sowie Herstellungsverfahren. Ein mögliches Antriebskonzept für die nachhaltige, emissionsarme Elektromobilität ist der so genannte Radnabenantrieb. Dabei ist der Motor vorteilhaft auf kleinstem Raum in der Radnabe des E-Fahrzeuges untergebracht. Auch an der Hochschule Aalen wird am LaserApplikationsZentrum (LAZ) daran geforscht, diese Art von Motoren weiterzuentwickeln. In einem Forschungsprojekt geht es aktuell darum, mit Hilfe laserbasierter, additiver und subtraktiver Fertigungsverfahren Komponenten herzustellen, die höchste Leistungsfähigkeit bei einem geringen Stromverbrauch bieten. Dabei konnte nun ein wichtiger Meilenstein erreicht werden.

AALEN Mit laserbasierten, additiven Fertigungsverfahren können Bauteile in konkurrenzloser Geometriefreiheit hergestellt werden, was die Gestaltung neuartiger, kompakter E-Antriebe für die Mobilität der Zukunft ermöglicht. Höchste Leistungsfähigkeit bei geringem Stromverbrauch wird dabei prinzipiell durch mikroskopisch dünne Luftspalte in den weichmagnetischen Komponenten erreicht, welche Wirbelstrombarrieren darstellen und damit Ummagnetisierungsverluste der Weichmagnete reduzieren. Wie solche Mikrohohlstrukturen für maximale Effizienz optimiert und direkt in 3D-gedruckten Antriebskomponenten hergestellt werden können, wird im Rahmen eines Projekts erforscht, an dem das LaserApplikationsZentrum (LAZ) der Hochschule Aalen beteiligt ist.

Mehrere Forschungsgruppen – ein Ziel 

Bis Ende des Jahres läuft noch das Projekt „ADDSUB“ unter dem Dach des „InnovationsCampus Mobilität der Zukunft“ (ICM) und wird mit rund 400 000 Euro durch das Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg gefördert. Darüber hinaus forscht im Rahmen des Projekts „ADDSUB“ das Institut für Materialforschung (IMFAA) der Hochschule Aalen an der Charakterisierung der Magnete, die in diesem Antrieb der Zukunft zum Einsatz kommen sollen. Weitere Projektpartner sind das Institut für Strahlwerkzeuge (IFSW) von der Universität Stuttgart sowie das Institut für Produktionstechnik (wbk) vom Karlsruher Institut für Technologie. Gemeinsames Ziel dieser Forschungsgruppen ist, die Effizienz einer sogenannten Transversalflussmaschine – ein Elektromotor für Radnabenantriebe – durch interdisziplinäre, technologische sowie wissenschaftliche Zusammenarbeit wesentlich zu steigern.

Der Projektname „ADDSUB“ steht dabei für eine optimierte Herstellung anforderungsgerechter, weichmagnetischer Komponenten für E-Maschinen durch Kombination additiver und subtraktiver Laserprozesse. Vereinfacht gesagt baut man im 3D-Druck-Verfahren ein Teil auf und bringt gleichzeitig während des Aufbauprozesses mit dem Laser durch subtraktiven Abtrag ganz gezielt mikroskopisch kleine Hohlräume hinein, um dadurch die spätere Leistung des Motors zu erhöhen. All dies passiert in einer einzigen Maschine. Das Team des LaserApplikationsZentrum hat nun innerhalb des Projekts einen wichtigen Meilenstein erreicht, indem es gelang, eine multifunktionale Pulver-Prozesskammer an der Hochschule Aalen zu entwickeln und aufzubauen.

Modulare, transportable und hochdichte Kammer entwickelt

Zur Vermeidung negativer Oxideinflüsse verfügt diese kompakte Pulver-Prozesskammer über einen mit Inertgas befüllbaren, hochdichten Bauraum mit dazugehöriger Schutzgasumwälzung und Gasreinigung. David Kolb, wissenschaftlicher Mitarbeiter am LAZ, zählt die weiteren Vorteile der Konstruktion auf: „Es handelt sich um ein vollumfassendes Pulverbett für die additive Fertigung verschiedenster industrieller und kommerzieller Werkstoffe. Wir können aber auch neue Materialien darin verarbeiten.“ Darüber hinaus sei die Prozesskammer nicht nur für die additive Fertigung, sondern auch für die Kombination aus additiver und subtraktiver Fertigung geeignet.

Das Konzept sei zudem modular und transportabel angelegt und könne an verschiedenen Laseranlagen eingesetzt werden. „Das Laser-Setup kann individuell auf den zu verarbeitenden Werkstoff angepasst werden“, erläutert er weiter. Der Aufbau sei vollautomatisiert, kompakt, flexibel und einfach adaptierbar und verfüge ergänzend über eine Reihe an Sensorik. Ziel des Projekts sei letztlich, mit den Ergebnissen der Forschung die Effizienz von Elektromotoren zu steigern und somit zugleich einen wichtigen Beitrag zur Erhaltung der Wettbewerbsfähigkeit von Herstellern und Zulieferern in Baden-Württemberg zu leisten.

Info: Das LaserApplikationsZentrum (LAZ) der Hochschule Aalen bearbeitet Forschungsthemen rund um die Laserprozesstechnik in den Bereichen des Leichtbaus, der elektrischen Energiespeicher (Batterietechnologie), Elektromobilität und der additiven Fertigung. Mehr Infos gibt es unter: www.hs-aalen.de/laz. Das Institut für Materialforschung (IMFAA) der Hochschule Aalen ist spezialisiert auf die Verarbeitung, Charakterisierung und Prüfung von Werkstoffen und Bauteilen. Der Schwerpunkt liegt auf fortschrittlichen Materialien und Komponenten für ressourceneffiziente Mobilität, erneuerbare Energien, additive Fertigung sowie maschinelles Lernen in der Mikroskopie und Bauteilprüfung. Mehr Infos zur Forschung am IMFAA gibt es unter: www.hs-aalen.de/imfaa. Beide Institute sind in der Fakultät Maschinenbau und Werkstofftechnik der Hochschule Aalen beheimatet und kooperieren unter anderem eng im BMBF geförderten Kooperationsnetzwerk SmartPro (www.smart-pro.org).

Hochschule Aalen
Technik und Wirtschaft
Beethovenstraße 1
73430 Aalen
www.hs-aalen.de  

Pressekontakt
Viktoria Kesper | Pressesprecherin
Saskia Stüven-Kazi | Stellvertretende Pressesprecherin
kommunikation(at)hs-aalen.de
Telefon 07361/576-1050 | -1056