Optomechanische resonatorgestützte Atominterferometrie

Fasergekoppelter optomechanischer Beschleunigungssensor an einem inertialen Referenzspiegel. (Quelle SFB DQ-mat)

Bei der Quanteninertialsensorik begrenzt das seismische Rauschen derzeit die Stabilität aller modernen Materiewellensensoren. Eine bessere seismische Isolation durch passive oder aktive mechanische Federsysteme ist - insbesondere bei transportablen Geräten – eine komplexe Aufgabe. Eine neue Methode stellen Forschende um Dennis Schlippert nun in Communications Physics vor.

Sie nutzen die komplementären Stärken von zwei quantenoptischen Systemen: optomechanische Resonatoren und Atominterferometer. Dadurch sind sie in der Lage, ein Atomgravimeter auch dann noch zu verwenden, wenn die Stärke des seismischen Rauschens üblicherweise den Betrieb verhindert.

Angesichts des raschen Fortschritts auf dem Gebiet der Quantenoptik sehen die Autoren damit ein großes Potenzial für Verbesserungen im Vergleich zu derzeitigen Lösungen. Sie gehen davon aus, dass ihre Methode in einer Vielzahl von Anwendungen genutzt werden wird, die von Inertialsensoren bis hin zu, möglicherweise, optischen Frequenzstandards reichen. Der komplette Artikel "Optomechanical resonator-enhanced atom interferometry" bei Communications Physics.

Kontakt:

Leibniz Universität Hannover
Sonderforschungsbereich 1227 DQ-mat
Welfengarten 1
30167 Hannover

www.dq-mat.uni-hannover.de