RSS Newshttp://en_ENSat, 04 Dec 2021 21:50:51 +0100Sat, 04 Dec 2021 21:50:51 +0100typo3news-2452Fri, 19 Nov 2021 12:37:00 +0100OpTecBB member meeting 2021https://photonicnet.de/After the successful election, we warmly welcome the new board of OpTecBB.Yesterday OpTecBB had the pleasure of welcoming its members to this year's member meeting in the Bunsen Hall in Berlin-Adlershof.Despite strict Corona requirements with 2G regulations and a hygiene concept, numerous members came to participate in the life of the association.This year the election of the board members was the order of the day. Two board members: Prof. Dr. Günter Tränkle (FBH) and Mr. Christian Kutza (FOC GmbH) said goodbye after many years and resigned from their office in the association. The chairman of the board, Prof. Martin Schell (Fraunhofer HHI), thanked them warmly for their commitment in all these years. After the successful election, we can congratulate the new and old board members on their (re-) election and look forward to the successful cooperation in the next two years.We are pleased to introduce the new board members:

Prof. Martin Schell (Fraunhofer HHI) | Peter Krause (insenso GmbH) | Dr. Adrian Mahlkow (OUT e.V.) | Prof. Martin Roth (Leibniz- Institut für Astrophysik Potsdam) | De. Henning Schröder (Fraunhofer IZM) | Gerrit Rössler (Berlin Partner für Wirtschaft und Technologie GmbH) | Ricarda Kafka (TRIOPTICS Berlin GmbH) | Jörg Muchametow (eagleyard Photonics GmbH) | David Mory (LLA Instruments GmbH & Co. KG)

]]>
news-2446Tue, 09 Nov 2021 21:24:25 +0100Turning quantum discoveries into real-life products with advanced R&D facilities in Berlinhttps://photonicnet.de/Quantum computing is hailed everywhere as the technology of the future, but what about quantum sensing and communicating? These capabilities promise to make quantum technologies the seed for a new generation of products in information and communication technology and modern sensor systems. But manufacturers who want to use the great potential and fundamental principles of quantum mechanics need highly specialized facilities and processes. With funding from the EU and the State of Berlin, researchers at Fraunhofer IZM have created a vision of a technology centre to power the development of new glass-based quantum technologies.Quantum objects measure just a handful of nanometres in scale, but they exhibit some unique behaviour: They do not exist in a certainly knowable position, nor do they move in a definable direction. Quantum particles can be entangled, even when they are far removed from each other. It is these phenomena that have inspired researchers worldwide to develop new quantum technologies with immense potential for applications in a wide range of industries.

The Fraunhofer Society is already playing its part in shaping this revolution with Germany’s first quantum computer, installed at the start of the year. But quantum research is not only about computing, as photonic quantum technologies promise groundbreaking innovations in quantum communications and sensors. In order for these revolutionary inventions to make their way into scalable components and market-ready products, researchers have to find ways to measure quantum states reliably and precisely.

Berlin’s QuantumPackagingLab will open in mid-2022 and is expected to become the go-to place for developing reliable packaging solutions for quantum photonics with its exceptional technical facilities. Researchers at the lab will be pursuing ambitious plans in their quest to close the remaining technology gaps and bring the second quantum revolution into industrial applications. Their endeavours include using glass as a transparent substrate and carrier for photonic circuits or expanding established waveguide technologies into the visible and near-infrared range, the so-called VIS-NIR spectrum. The researchers are using panel-level integration approaches originally designed for electronic circuit boards. To prepare the existing packaging and system integration technologies for this leap into quantum photonics, the Fraunhofer Institute for Reliability and Microintegration IZM is creating a completely new infrastructure landscape in no fewer than four separate labs, with five units playing a particularly crucial role:

Scanning Nearfield Optical Microscope (SNOM)

  • How it works:

As the centrepiece of the optical measurement lab, the SNOM uses optical spectroscopy to scan the surfaces of nanophotonic components. To do so, it focuses an incredibly narrow laser beam, with a smaller diameter than a waveguide, in the immediate proximity of the sample. Highly reliable measurements are also possible by using the evanescent field that is created around a surface when a light wave fades.   

  • What it brings:

The SNOM gives researchers the ability to characterize nano-photonic components with extreme precision, at a resolution far below the diffraction limit for distortion-free imaging. The plans include the eponymous scanning near-field optical microscope for exploring the evanescent field of glass-embedded waveguides and optical nanofibers to optimize the interaction between light and matter as well as fluorescence microscopes for nanostructures (e.g. individual molecules, nitrogen-vacancy defects in diamonds, quantum dots, or nanocarbons).

Waveguide coupler

  • How it works:

This large automated unit uses an integrated camera and search and optimization algorithms to couple several waveguides with a fibre array. The coupled light can then be detected at the waveguide’s output side.

  • What it brings:

For glass-embedded waveguides to become usable in quantum technology, their production process has to be adjusted for the visible and IR light spectrum, with single-mode light guiding and minimal propagation losses. This has already been possible with a custom system built at Fraunhofer IZM, but the researchers hope to make the measuring processes much faster and more precise with the new facilities.

3D Glass Printer

  • How it works:

The 3D glass printer uses ultrashort light impulses to model glass structures. Its surfaces can then be modified by etching. The printer unit is expected to be particularly useful for laser direct writing, that is, the use of a laser to create waveguides and other photonic structures like diffraction gratings directly in the glass. The system will also be able to drill microcavities or weld glass by heating up only the immediate target area to create transparent, but hermetically sealed glass-on-glass joints.

  • What it brings:

The 3D glass printer opens up a world of possibilities: Level or curved optical surfaces can be created directly on the waveguides e.g. to activate quantum emitters. The novel weld joints will be crucial for thermally insulating quantum sensors or for producing miniature spectroscopy cells. The researchers expect a tenfold improvement over conventional technology in the roughness, precision, and reproducibility of glass structures created with this system.

Micro Ultra-High Vacuum Bonder

  • How it works:

The new bonder will be used for laser soldering and other hermetic joining processes for glass in a vacuum. The highly focused laser beam is absorbed by the glass solder, heating it up to the melting temperature and creating a joint between two glass surfaces.

  • What it brings:

The micro ultra-high vacuum bonder will be particularly useful for testing new ways to join glass surfaces. The key is to create joints that are hermetically sealed on the microlevel to allow the development of micro vacuum or micro gas cells or other thermally insulated designs.

Ultra-High Vacuum Vapor Deposition Unit

Highly Precise Vacuum Metalizing


  • How it works:

In the ultra-high vacuum vapor deposition system, glass surfaces can be metallized with extremely fine coats of only a few nanometres, applied with a record precision of a single nanometre. This process is used to create semi-transparent metalized mirrors or to turn the metalized surfaces themselves into plasmonic guides.

  • What it brings:

The system is taking the capabilities of conventional sputtering to the quantum technology domain. It can be used to create parallel or confocal gold coats with microscopically tiny cavities along the waveguide. When quantum emitters enter these cavities, the emission patterns change, and light particles are far more likely to be emitted in the direction of the waveguide.

Fraunhofer IZM is looking for research partners to tread new ground in application-driven system integration, especially assembly and packaging technologies, for quantum communication and quantum sensors.

The QuantumPackagingLab is supported by the State of Berlin with EFRE co-funding at an amount of €3,392,000.

SOURCE

]]>
news-2443Fri, 05 Nov 2021 13:52:55 +0100OQmented, Technology Leader in MEMS-Based AR/VR Display and 3D Sensing Solutions, Secures USD 9.3M of Fundinghttps://photonicnet.de/OQmented, the Itzehoe-based deep tech venture, has successfully extended its seed round and has now raised a total of nearly USD 20 million. The fresh financing will be used to expand the company’s locations and R&D for strengthening its position as a leading enabler for Big Tech in AR and VR Itzehoe, Germany, Nov. 4, 2021 - OQmented today announced that it extended its seed round and secured an additional USD 9.3 million. New investors IT-Farm, Leblon Capital, and Deeptech-A join a syndicate that includes Vsquared Ventures (Vsquared), Salvia, and Baltic Business Angels, along with several Angel investors. The deep tech startup has raised nearly US$20 million since its 2018 spin-out from the Fraunhofer Institute in Germany. The funds will be invested in the expansion mainly of the company’s location in Itzehoe, accelerating their Research & Development as well as fostering existing partnerships and establishing cooperations with new partners. They will fast-track market penetration of OQmented’s MEMS mirror-based laser beam scanning (LBS) technology for AR/VR smart glasses. The tiny projection display—the industry’s first one-chip solution—gives product innovators the essential enabling technology for smart glasses that offer powerful visualization capabilities in a stylish, virtually weightless frame. The product will help propel AR/VR technologies into the mainstream, smoothing the runway to the next iteration of the internet, and enabling applications like 3D cameras, LiDAR, and machine vision products. Salvia Founder and Managing Partner, Helmut Jeggle, noted that with advanced AR/VR technologies the notion of smart glasses replacing the smartphone is becoming more real. “OQmented is at the forefront of this trend with its game-changing projection display technology,” he said. “Our investment decision was sparked by the team’s sharp market instincts and reinforced by the value that their innovation will create for myriad industries.” Vsquared General Partner, Benedikt von Schoeler, remarked on the company’s disciplined execution, noting: “The team has been remarkably resource-efficient, innovating aggressively while scaling a company to support Big Tech customers. With a differentiated solution ready for adoption, as well as a manufacturing partnership with a MEMS leader, it is an exciting time to engage.” Julian Nguyen of IT-Farm adds: “Proximity to key customers isn’t just a business imperative for a company with highly enabling technology, it’s also a competitive differentiator. With our roots and connections in Japan and Silicon Valley, we can help the team get their product into customer design flows faster and more efficiently.”

The full press release can be found here.

]]>news-2438Thu, 28 Oct 2021 10:50:20 +0200Zuverlässige Halbleiter für Space und Quantentechnologien – von Chips bis zu Systemenhttps://photonicnet.de/Das FBH besitzt langjährige Erfahrung bei der Entwicklung und Fertigung von robusten, kompakten Diodenlasermodulen für anspruchsvolle Weltraumanwendungen. Die Module haben ihre Leistungsfähigkeit bereits mehrfach in Experimenten unter Schwerelosigkeit bewiesen. Unter anderem fertigt das FBH derzeit 55 ultra-schmalbandige Lasermodule, die es für die BECCAL-Apparatur (Bose-Einstein Condensate – Cold Atom Laboratory) entwickelt hat. Sie sollen in der vom Deutschen Zentrum für Luft- und Raumfahrt DLR und der NASA ab 2024 betriebenen Forschungsanlage für quantenoptische Experimente mit ultra-kalten Atomen an Bord der internationalen Raumstation ISS eingesetzt werden. Fundamentalphysikalische Fragestellungen mit Quantenobjekten sollen damit nahe dem absoluten Temperaturnullpunkt (-273,15 °C) hochgenau untersucht werden. Lasersysteme für quantenoptische Präzisionsexperimente

Das FBH besitzt langjährige Erfahrung bei der Entwicklung und Fertigung von robusten, kompakten Diodenlasermodulen für anspruchsvolle Weltraumanwendungen. Die Module haben ihre Leistungsfähigkeit bereits mehrfach in Experimenten unter Schwerelosigkeit bewiesen. Unter anderem fertigt das FBH derzeit 55 ultra-schmalbandige Lasermodule, die es für die BECCAL-Apparatur (Bose-Einstein Condensate – Cold Atom Laboratory) entwickelt hat. Sie sollen in der vom Deutschen Zentrum für Luft- und Raumfahrt DLR und der NASA ab 2024 betriebenen Forschungsanlage für quantenoptische Experimente mit ultra-kalten Atomen an Bord der internationalen Raumstation ISS eingesetzt werden. Fundamentalphysikalische Fragestellungen mit Quantenobjekten sollen damit nahe dem absoluten Temperaturnullpunkt (-273,15 °C) hochgenau untersucht werden.

Kernstücke dieser und bisheriger Diodenlasermodule sind am FBH entwickelte Laserdioden, die gemeinsam mit Optiken und weiteren passiven Elementen mit höchster Stabilität und Präzision aufgebaut werden. Dank der einzigartigen Mikrointegrationstechnologie des FBH sind die Module extrem robust und ideal für den Einsatz im Weltraum geeignet. Sie zeichnen sich durch geringe Abmessungen von nur 125 x 75 x 23 mm³, eine geringe Masse (750 g) sowie exzellente Leistungsparameter aus: Ausgangsleistungen > 500 mW bei zugleich schmaler intrinsischer Linienbreite < 1 kHz werden erreicht.

In enger Zusammenarbeit mit der Humboldt-Universität zu Berlin werden derartige Module auch zu kompakten Quantensensoren und optischen Uhren für den Einsatz im Weltraum und für industrietaugliche Systemlösungen in der Quantentechnologie aufgebaut. Das gemeinsame Joint Lab stellt eine neuartige, völlig autonome frequenzstabilisierte Laserquelle mit integrierter DFB-Laserdiode vor, die auf dem D2-Übergang in Rubidium bei 780 nm basiert.


Lasermodule für Satelliten: von Kommunikation bis Klimaschutz

Weitere Lasermodule entwickelt das FBH für Satellitenanwendungen. Laserdiodenbänke (LDB) des Instituts werden seit vielen Jahren erfolgreich als Pumplaser in Laserkommunikationsterminals (LCT) der Firma Tesat-Spacecom eingesetzt. Damit werden unter anderem hohe Datenmengen der Erdbeobachtung besonders schnell zwischen Satelliten und zur Erde übertragen. Die LDBs werden nach den Standards der Europäischen Weltraumorganisation (ESA) für Weltraumanwendungen entwickelt und qualifiziert. Deren Wellenlänge wird so auf das Pump-Übergangsband eines Nd:YAG-Lasers stabilisiert, dass der Laserstrahl des Pumplasers die stabile LCT-Leistung gewährleistet. Hinzu kommt die exzellente Zuverlässigkeit über die gesamte 15-jährige Lebensdauer der Mission.

Das FBH zeigt auch ein DBR-Laserarray-Modul, das dank eines auf Chipebene integrierten, die Wellenlänge stabilisierenden Bragg-Reflektors sowohl ein geringes Rauschen als auch eine hohe Zuverlässigkeit bietet. Die Eignung derartiger Module wurde für einen Dauerbetrieb von mehr als 15 Jahren nachgewiesen. Damit qualifizieren sie sich als Flughardware für die nächsten LCT-Weltraummissionen. Ein weiterer Pumplaser soll künftig auf dem Klimasatelliten MERLIN eingesetzt werden, der die Methankonzentration in der Atmosphäre messen soll. Dafür hat das FBH Lasermodule entwickelt, qualifiziert und geliefert, die jeweils mit zwei Hochleistungslaser-Halbbarren ausgestattet sind. Diese Module liefern 130 W gepulste Emission bei 808 nm und pumpen einen Nd:YAG-Laser. Die Leistungsfähigkeit und Zuverlässigkeit über die gesamte Missionsdauer wurde anhand umfangreicher Qualifikationen der Technologie nachgewiesen und vom ESA-Technologiezentrum ESTEC bestätigt. So degradiert die Leistung selbst bei einer langen Betriebsdauer von über vier Milliarden Pulsen nur unwesentlich.


Energieeffiziente Komponenten für Satellitenkommunikation und -sensorik

Wegen ihrer hohen Strahlungshärte und der möglichen hohen Schaltfrequenzen eignen sich Galliumnitrid (GaN)-Schalttransistoren besonders für das Power Conditioning in Satelliten. Der vom FBH neu entwickelte 10 A/400 V Aluminiumnitrid Power Core mit GaN-Leistungstransistoren in Halbbrücken-Konfiguration minimiert Streuinduktivitäten und Kapazitäten der Schaltzelle. Dabei werden Leistungsschalter, Gatetreiber und DC-Link-Kondensatoren extrem kompakt heterointegriert und die Wärme wird effizient durch das Aluminiumnitrid-Substrat abgeführt. So konnten die Schaltzeiten der Leistungszelle gegenüber einem traditionellen Aufbau mit diskreten Bauelementen halbiert werden. Hohe Schaltfrequenzen bei gleichzeitig hohem Konverter-Wirkungsgrad sind die Voraussetzung für Leistungskonverter mit besonders hoher Leistungsdichte. Ein zentraler Aspekt, da jedes Gramm im Weltraum zählt.

Stromverbrauch und Verlustleistung sind weitere kritische Punkte beim Betrieb von Leistungsverstärkern im Weltraum. Daher entwickelt das FBH Konzepte zum Envelope Tracking – eine bekannte Technik, um die Effizienz von Hochfrequenz-Leistungsverstärkern zu steigern.

QUELLE

]]>
news-2433Fri, 22 Oct 2021 10:54:47 +0200Meet Prima, PicoQuant’s new multiple color pulsed diode laserhttps://photonicnet.de/The stand alone, compact laser module provides three individual wavelengths at an affordable priceIn a recent webinar, PicoQuant has unveiled its latest laser innovation: the stand alone, fully computer controlled laser module Prima.

“Our objective when developing Prima was to offer a solution to a common challenge faced by many researchers. They often need more than a single excitation wavelength to study all of their samples, but buying multiple lasers can become quite expensive. So we tapped our 25 years of expertise in laser development to create an affordable, compact module that can emit red, green, and blue light”, says Guillaume Delpont, Product Manager at PicoQuant.

Prima generates laser light at 635, 510, and 450 nm with each color being emitted individually, one at a time. These three wavelengths cover most of the excitation needs for daily lab tasks, such as lifetime or quantum yield measurements, photoluminescence, and fluorescence. The new laser module supports pulsed operation with repetition rates up to 200 MHz, continuous wave (CW) mode as well as fast switching CW capability with a rise/fall time of less than 3 ns. In pulsed mode, each wavelength can achieve an average optical output power of typically 5 mW, and up zo 50 mW in CW mode.

Thanks to its stand alone design, Prima does not require any additional laser driver. All settings and operating parameters are fully computer controlled via an intuitive, WindowsTM based control software. Prima’s flexibility and ease-of-use make it a versatile yet affordable tool for many research applications in life or materials science.

SOURCE

]]>
news-2427Fri, 15 Oct 2021 12:10:29 +0200Tiny package, greater depth – A plenoptic high-speed camera designed by Fraunhofer researchershttps://photonicnet.de/Researchers at Fraunhofer IZM have joined forces with TecVenture, Optrontec Inc., and KAIST to create a high-speed camera fitted with a unique multi-lens array that can capture images with a far greater depth of field than its conventional counterparts. The miniaturized electronics make the system a good choice for efficient damage analytics in industrial use or for many research activities. To prepare the camera for reliable work in the tough reality of industrial environments without compromising its compact size, the electronics for the system were miniaturized by Fraunhofer IZM using the Institute’s embedding technology. As production processes are accelerating everywhere in industry, manufacturers need the right means to monitor these processes at every link in the chain. Increasingly, their weapon of choice for this mission is high-speed cameras. But conventional cameras struggle with adjusting their focus quickly enough to track objects moving through their field of vision. A solution is to use cameras with a greater depth of field with the same optics, with the focus virtually adjusted by processing the resulting image data to produce a clear image at the right depth. The Fraunhofer IZM researchers and their partners took on the challenge of creating a high-speed and highly miniaturized camera capable of this feat.

The right lens is chosen for the application and the image focused on a full-format sensor. A special multi-lens or polarization filter array, made by KAIST and Korea’s Optrontec, is placed in the path between lens and sensor to get a greater depth of field and better contrast to capture even the fine structural details of the monitored objects. Operating at a speed of 2000 images per second – a tenfold increase compared to conventional cameras – the system enables an accurate visual analysis of the very fast, often critical processes happening in laboratories or factories.

The Micro-Lens Array (MLA) consists of a closely populated matrix of lenses, each placed only 150 micrometres from the next. All of the components needed to supply the image sensor are mounted directly beneath the sensor itself in a highly integrated embedded module.

With 3D stacking and different electronic components embedded directly in the circuit board, the system could not only be miniaturized into a tiny package, but also equipped with far shorter electrical connections, a must-have for better signal quality in high-speed systems of this nature. The almost completely encapsulated design also makes the system extremely rugged and robust. The highly integrated electronic module was created with the production facilities available at Fraunhofer IZM.

The camera revealed its exceptional performance immediately in the first functional trials. Over the next months, the production process will be refined and ramped up for industrial use. But the plenoptic camera is not only a great tool for industrial process analysis: Its combination of great speed and an excellent depth of field also makes it a promising choice for scientists exploring other biological, chemical, or physical processes.

SOURCE

]]>
news-2419Fri, 08 Oct 2021 14:57:17 +0200PHOTONICS DAYS BERLIN BRANDENBURG 2021https://photonicnet.de/After an all online event last year, due to corona, the Photonics Days were back this year in Berlin-Adlershof!From October 4th to 7th, this year's Photonics Days Berlin Brandenburg 2021 took place as a hybrid event. It was an exciting 4 days with 26 sessions, 18 of them on-site in hybrid format, over 100 speakers from over 15 countries and an accompanying exhibition with Germany and EU-wide exhibitors.

Over 540 participants had registered for the event, including over 250 for the face-to-face sessions on site. Despite the strict Corona requirements, many national and international speakers and participants took part in the face-to-face event.

On October 6th, many optics and photonics enthusiasts met for the evening reception in the Bunsen Hall for networking over wine and live music. As a small highlight of the evening, the Laserassociation Berlin Brandenburg presented an award for outstanding achievements in the field of laser technology to Mr. Igor Haschke (represented that evening by Tom Lueders) (B.I.G. Holding).

It was a wonderful atmosphere and a great feeling to see old friends and meet new ones. There were many exciting encounters and a lively exchange both online and on-site.

We, the OpTecBB-team, would like to thank our partners and sponsors:
WISTA Management GmbH | Berlin Partner for Business and Technology GmbH | FISBA | EXFO,
who supported us in the planning and organization of the Photonics Days.

Our big thank you also goes to the chairs and speakers who managed to present a large number of exciting topics from various areas of optics and photonics.

We look forward to the Photonics Days 2022 (Save-The-Date: autumn 2022) and hope to welcome you as a participant, speaker or exhibitor!

]]>
news-2398Wed, 22 Sep 2021 22:29:44 +0200 VI Systems participates in energy efficient data link projecthttps://photonicnet.de/The Green ICT project of the German Federal Ministry of Education and Research (BMBF) has been awarded to a consortium of companies and universities which aims to reduce the energy consumption of edge servers in 5G networks by 90%.VI Systems is part of a consortium of companies and universities which is has been awarded with a grant from the German Federal Ministry of Education and Research (BMBF). The total funding of EUR 12 million will be divided among the three winners of the Green ICT innovation competition. The project EC4 in which VI Systems participates ranks on the first place. It aims at the next generation of energy efficient high speed optical data communication links to reduce the energy consumption of edge servers in 5G networks by 90%.

The consortium is led by the Technical University of Dresden, Mobile Messaging Systems Section, and includes 11 companies and associated partners including Nokia Bell Labs, Vodafone, Globalfoundries, National Instruments. VIS is a leader in low cost optical components for the shortwave wavelength division multiplexing (SWDM) spectral range (vertical surface emitting laser (VCSEL) and photodetector chips) presently capable to 224 Gbps per single wavelength. It is expected that much higher data rates can be achieved with VCSEL chips in the future.

SOURCE

]]>
news-2396Wed, 22 Sep 2021 22:22:22 +0200German Astronomical Society 2021 Awardshttps://photonicnet.de/The German Astronomical Society (AG) has named its prize winners for 2021. Jocelyn Bell Burnell is honoured with the Schwarzschild Medal; Fabian Schneider receives the Ludwig Biermann Award, Martin Roth the Instrument Development Award, Anke Arentsen the Doctoral Thesis Award and Uwe Reichert the Bürgel Prize. Lukas Weghs is awarded the Jugend forscht special prize.Professor Dame Jocelyn Bell Burnell, currently visiting Professor of Astrophysics at the University of Oxford, receives the Karl Schwarzschild Medal of the German Astronomical Society 2021 for her outstanding contributions to the field of astrophysics. With the highest award for astronomical research in Germany, the Astronomical Society honours Professor Bell Burnell as an eminent scientist whose work has not only created the field of pulsar astronomy - with diverse applications in a wide range of fundamental physics and astrophysics - but has had a great impact on the field of astrophysics as a whole. Many prestigious institutions and organisations, such as the Institute of Physics and the Royal Astronomical Society, have benefited greatly from her scientific leadership. With persistence and insight, driven by curiosity and determination, her discoveries, her research and her life-long dedication to conducting and promoting astronomical research, she has been one of the most inspiring scientists for generations.

Professor Martin Roth from the Leibniz Institute for Astrophysics Potsdam (AIP) is being honoured with the Instrument Development Award for his significant work on the development of 3D spectroscopy, his outstanding contributions to the research and development of astrophotonics, to the teaching and training of young scientists in astronomical instrumentation, and to the resulting advances in the astrophysical study of resolved stellar populations. Under his leadership, the PMAS instrument was a breakthrough in the observational technique of integral field spectroscopy, crowned by the successes of MUSE and VIRUS, producing internationally visible science results. He also been a pioneer in multi-disciplinary research, and transfer of knowledge and technology, e.g., the use of astronomical instrumentation for medicine and life science. His achievements include the establishment of the interdisciplinary centre innoFSPEC, which is dedicated to the development of astrophotonic technologies and is unique in Germany.

With the Ludwig-Biermann-Award, the AG honours Fabian Schneider, junior group leader at the Heidelberg Institute for Theoretical Studies (HITS), for his work on the study of the evolution of massive stars, binary stars and supernovae. His research achievements led to numerous and highly cited publications. He is considered an internationally recognized expert in his field. Fabian Schneider received his PhD at the University of Bonn in 2015. He then moved to Oxford University as a Hintze Fellow. In 2018 he became a Gliese Fellow at the Center for Astronomy at Heidelberg University. In 2020, he received an ERC Starting Grant, and started to establish a research group focused on stellar evolution theory and the turbulent and explosive lives of massive stars at HITS in January 2021.

For her spectacular results on the chemical composition and dynamics of stars in the inner regions of our Milky Way, the AG awards the Doctoral Thesis Prize to Anke Arentsen. She received her PhD from the Leibniz Institute for Astrophysics Potsdam (AIP) and is currently a postdoc at the astronomical observatory in Strasbourg. Her PhD thesis was dedicated to Galactic Archeology and the oldest stars in our home galaxy. Anke Arentsen made important contributions to the understanding of the Milky Way and what it looked like at its infancy. She published the scientific results of her dissertation in several publications and successfully presented them at international conferences and public lectures.

The AG awards the Bruno H. Bürgel Prize to Uwe Reichert, for excellent popular representations of the latest astronomy results in the German media. As editor-in-chief of the astronomy magazine Sterne und Weltraum, Uwe Reichert played a leading role in determining the development and content of the magazine for over 13 years, and was extremely adept at adapting the editorial and technical practices to the new challenges of the digital media world. Sterne und Weltraum is the leading German language publication for generally accessible astronomy. It is a globally unique cooperation between active professional astronomers, the amateur astronomy community, and science journalists. It is characterised by outstanding quality, educational materials, an internet platform with daily astronomy news, and a very successful Twitter and Youtube channel.

Lukas Weghs, from the Städtisches Gymnasium Kempen, receives a special price from the AG for the best work in the field of astronomy in the national competition "Jugend forscht" (youth's research). With his work "Photometric search for Exomoons by using deep learning and a convolutional neuronal network", which he developed at the Institute of Planetary Research at DLR in Berlin, he was also the national winner in the field of space and earth sciences. Lukas developed a self-learning program for a high-performance computer that supports the search for moons around exoplanets. The program systematically analyses deviations in the light curve of transit events that cannot be explained by the transiting planet alone. It thus provides clues to the possible existence of exomoons.

The award ceremonies will take place during the virtual annual meeting of the German Astronomical Society from September 13-17, 2021.

 

Photos and Credits:

Jocelyn Bell Burnell: Courtesy Royal Society of Edinburgh
Martin Roth: BMBF
Fabian Schneider: Annette Mück / HITS
Anke Arentsen: private
Uwe Reichert: private

SOURCE

]]>
news-2390Mon, 13 Sep 2021 12:13:52 +0200TOPTICA: New powerful laser passes field testhttps://photonicnet.de/A powerful experimental laser developed by the European Southern Observatory (ESO), TOPTICA Projects1 and other industry partners2 passed a key test last month at the Allgaeuer Volkssternwarte Ottobeuren observatory in Germany. The adaptive-optics laser has important additional capabilities compared to existing systems. It is to be installed at the European Space Agency’s (ESA) Optical Ground Station in Tenerife, Spain, in the frame of the ESO–ESA Research & Development collaboration. The higher laser power and its chirping system will lead to significant improvements in the sharpness of astronomical images taken with ground-based telescopes. The technology also opens the door for developments in laser satellite communication.Astronomical adaptive optics refers to systems on ground-based telescopes that correct for the blurring effect brought about by turbulence in the Earth’s atmosphere — the same effect that causes stars seen from Earth to “twinkle”. To remove the distortions, these systems require a bright reference star close to the object of study.
Because these stars are not always conveniently placed on the sky, astronomers use lasers to excite sodium atoms at 90 km altitude in the Earth's atmosphere, creating artificial stars near the field of interest that can be used to map and correct for the atmospheric turbulence.
The narrow band highest optical quality laser power of 63 Watts locked to the sodium wavelength as such is already a significant leap forward compared to current astronomy laser technology. However, a second important step has been the experimental frequency chirping system developed and implemented by TOPTICA Projects in collaboration with ESO, that is targeted to also improve the signal-to-noise of the adaptive optics system.
Chirping consists in rapidly changing the frequency to which the laser is tuned. This increases the number of sodium atoms excited by the laser, making the artificial star brighter and thus improving the turbulence correction. TOPTICA has installed the chirping prototype on the ESO 63 Watts CaNaPy laser and, together with ESO, has commissioned on sky both the laser and its novel chirping system.
Once the technology is installed at the ESA Optical Ground Station in Tenerife — a collaborative project between ESO and ESA — it will provide both organizations with opportunities to advance the use of laser guide star adaptive optics technologies not only for astronomy but also for satellite optical communication.

>> more information

Kontakt:
TOPTICA Photonics AG
Lochhammer Schlag 19
82166 Graefelfing
E-Mail: info(at)toptica.com
Internet: www.toptica.com

]]>
NewsFrom the member companiesResearch and sciencepress report
news-2386Thu, 09 Sep 2021 14:28:55 +0200Berlin Quantum Alliance launchedhttps://photonicnet.de/Yesterday the Berlin Senate has unlocked the first 10 Mio Euro for quantum research in Berlin for the years 2022 and 2023. This is part of a 25 Mio Euro program over five years.Within the newly formed Berlin Quantum Alliance (BQA) 15 Mio Euro will be used for basic research and 10 Mio Euro will be put into applied research in the next five years. On one hand the activities will focus on software – quantum computing in basic research and industry related applications. On the other hand new hardware will be developed – photonic quantum enabling technologies like for instance Photonic Integrated Circuits (PIC) for quantum sensing.
The concept was developed between Berlin University Alliance (FU / Prof. Jens Eisert, HU / Prof. Arno Rauschenbeutel & Prof. Oliver Benson, und TU / Prof. Jean-Pierre Seifert), Fraunhofer Institute for open Communication Systems (FOKUS / Prof. Manfred Hauswirth) and Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute (HHI / Prof. Martin Schell).
OpTecBB will support networking between the research institutes and the photonic SME landscape.

]]>
news-2379Mon, 06 Sep 2021 14:32:14 +0200New European Academy to boost the skills and know-how of industry in exploiting opportunities in the €615B global photonics sectorhttps://photonicnet.de/A programme to train thousands of industry workers in the adoption and development of innovative photonics-based solutions to some of society’s biggest challenges, from environmental sustainability to healthy living and smart infrastructure, has been established by a consortium of over 50 of Europe’s top photonics competence centres. The European Photonics Academy will offer training courses beyond the lecture room with a strong focus on hands-on training. Course attendees will gain real-world experience using state-of-the-art design, manufacturing, test equipment and facilities. The academy’s training centres will offer unique courses across a wide range of photonics technology platforms and application domains. The academy will initially run for four years with the clear intention of becoming a sustainable long-term support to European industry.

Interest in photonics is booming, with the global photonics market estimated to be worth €615B in 2020 and recent research showing that the European photonics market is growing at more than double the rate of global GDP. However, gaining access to the cutting-edge technical know-how and the hands-on skills required to utilise photonics technologies remains difficult for many companies, especially small- and medium-sized enterprises (SMEs). The academy, launched by PhotonHub Europe, the full-service one-stop-shop Photonics Innovation Hub funded by the European Commission, will make it easy for SMEs in particular to fully exploit this critical enabling technology for their own innovation activities.

“For the first time the European Photonics Academy means that SMEs have a one-stop-shop to pick and choose from a large menu of training options, making it easy to get the exact training course suited to their needs. Companies can be assured that their employees are getting top quality training from best-in-class facilities since quality assurance is overseen by PhotonHub,” said Prof Peter O’Brien of the UCC Tyndall Institute in Ireland, who leads training support services at the academy. “We expect to support 6,000 European companies with training over the next four years, each sending several employees on one or more of our courses, with several hundred companies immediately taking up photonics technologies in their applications and product manufacturing as early adopters. As a result, we believe the academy will be a massive catalyst for the take-up of photonics by European companies.”

Photonics involves the generation, manipulation and detection of light and is a key enabling digital technology that underpins many existing and emerging applications. Over the next decade photonics will make a significant impact to our everyday lives – transforming industries, tackling critical issues such as climate change, and improving societies across Europe. Some current applications include:

  • Agriculture (scanning technology and infrared imaging to monitor food production and quality, and sensor systems for planting and irrigation)
  • Green Energy Sources (LED lighting and Photovoltaic devices used for solar electric panels)
  • Information Communications Technology (optics for data storage, transmission across fibre-optic networks and displays)
  • Life Sciences (testing and analysis devices such as non-invasive glucose monitors and point-of-care and wearable diagnostics)
  • Medical Technology (lasers for surgery, photodynamic therapy, smart surgical instruments).


Europe is a global leader in the development of photonics technologies, with much of this innovation generated through research funded by the European Commission. The new academy will allow European workforces access to state-of-the-art photonics technologies and advanced methods of photonics manufacturing through structured training and education. To-date, 40 training centres across Europe have been selected for funding, with 10 more to be announced later this year. Critically all regions of Europe will have access to training, including those with little or no expertise in photonics, with centres as far apart as Ireland, Spain, Finland and Greece.

Three types of training courses are available:

  • Online Training, geared towards new entrants to the photonics sector providing a half-day introduction to photonics and an overview of the key enabling power of photonics technologies for wide-ranging applications.
  • Demo Centres, offering one-day training courses on-site with a focus on particular photonics technology applications.
  • Experience Centres, offering in-depth three-day or five-day training courses with a strong focus on lab-based activities and hands-on working using state-of-the-art equipment and application demonstrator tools.


People wishing to attend any of the Online Training, or either of the Demo or Experience Centre training courses, can browse the training catalogue via the PhotonHub website and register for the particular course of interest to them.

Further details about PhotonHub’s extensive Online Training, and Demo and Experience Centre training courses, can be found in the HERE.

]]>
news-2375Wed, 01 Sep 2021 11:40:26 +0200AEMtec GmbH announces USA Tech Center Opening in Boston, MA.https://photonicnet.de/Boston, MA – AEMtec GmbH from Berlin, Germany, a company widely known for its high precision microelectronic and Silicon Photonic assembly capabilities, announced today the September 1st opening of its anticipated Engineering Tech Center within the Boston University Photonics Center. Says Robin Jerratsch, a highly skilled and experienced microelectronics and optics engineer who relocated from Berlin, Germany to manage the Tech Center; “Our purpose here within the BU Photonics Center, is to be at the center of cutting- edge Silicon Photonic and microelectronic product development. Here we can better serve our US Customers by offering rapid prototyping for their product development programs which require wire bonding, flip chip and precision placement services within a cleanroom environment”.
Jan Trommershausen, Managing Director for AEMtec GmbH had this to say; “We believe that the Tech Center will offer the opportunity for our USA based Customers to validate their new product designs and then seamlessly transfer the product to our large production facility in Berlin, and what better place to have a Tech center than in the heart of Boston, known for its science and technology development.”

SOURCE

]]>
news-2370Mon, 23 Aug 2021 09:53:00 +0200Astrophotonics – an emerging field in astrophysicshttps://photonicnet.de/Guest-edited by Dr Aline Dinkelaker and Dr Aashia Rahman in an international editorial team, two renowned journals in the area of optics and photonics have published a joint feature issue on the topic of astrophotonics, one of the research fields of innoFSPEC Potsdam at the Leibniz Institute for Astrophysics Potsdam (AIP).Astrophotonics deals with photonic components for astronomy, which are intended to become an integral part of the next-generation astronomical instruments. Initiated by AIP researchers, the journals JOSA B and Applied Optics of the Optical Society (OSA) dedicated a joint feature issue to this topic. This feature issue, for which Dr Aline Dinkelaker and Dr Aashia Rahman acted as guest editors and contributed an introduction to the subject, looks into some of the significant developments in astrophotonics and shows the scientific maturity of this research field.

Collectively, more than 20 papers in different areas of astrophotonics, and their applications in instruments for astronomy, are being published from research communities worldwide. Dr Kalaga Madhav, head of the research group Astrophotonics at AIP, summarises the publications: “The articles from research groups around the world cover a broad range of astrophotonic topics, such as interferometric beam combiners to create extremely sharp images, e.g. of stellar surfaces or the environment of black holes, miniaturized spectrographs “on-a-chip” for next generation space telescopes, high precision frequency combs for the detection of exoplanets, and many more. The activities of the Astrophotonics group at AIP are prominently reflected in as many as six publications, after all a quarter of the papers in the feature issue”.

The launch of this feature issue celebrates the ongoing progress in astrophotonics and its incorporation into instrument designs: Fibre-based spectroscopy, which started with novel designs at the onset of innoFSPEC, is now an established and trusted technology and is included in instruments such as the future telescope 4MOST. The same development is foreseen for astrophotonics at innoFSPEC, and the researchers are already establishing collaborations and testing their components at telescopes and in astronomical instruments. With reference to the future of astrophotonics, section head of innoFSPEC professor Martin Roth states enthusiastically, ”The emerging area of astrophotonics has already supported important discoveries in astronomy, e.g. the ground breaking work of Nobel laureate Reinhard Genzel about the black hole in the Galactic Center. Given the level of maturity and reliability that this technology has now reached, we expect that innoFSPEC, in collaboration with international partners such as the European Southern Observatory (ESO), will launch more exciting innovations”.

The excellence centers innoFSPEC in Germany and CUDOS in Australia were the first research groups to focus on exploring the diverse research areas under astrophotonics. However, the publication of this feature issue indicates that the emerging area of astrophotonics has now gathered momentum in many countries. The agreement for a joint astrophotonics research collaboration, signed between AIP and ESO in 2020, is another indication for the growing importance of the field. The editorial team of the feature issue consisted of nine members in total, with Professor Joss Bland-Hawthorn, an ARC Laureate Fellow Professor of Physics and Director of the Sydney Institute for Astronomy (SIFA) as the lead editor.

“As researchers in astrophotonics, we see how fast the field advances. With the feature issue, we wanted to provide a platform to showcase the progress and highlight this relatively young topic to scientists from other research fields. As experimental physicists, being guest editors for a journal was new to us. It was an exciting experience to be engaged in every level of the entire publication process, especially in the exchange with authors, journal staff, and the community. Accompanying the manuscript from submission through peer review, finally leading to a high-quality publication, is very rewarding”, say Aline Dinkelaker and Aashia Rahman, who since 2019 have been focusing on bringing the idea of this feature issue from conception to fruition.

Source

]]>
news-2368Wed, 18 Aug 2021 15:54:00 +0200Panel Level Packaging Consortium 2.0 – The First Year!https://photonicnet.de/Despite the COVID-19 crisis, Fraunhofer IZM and its 17 partners on the PLC 2.0 consortium have achieved excellent results within the first year. All partners met in a virtual meeting for two days. The time difference for such world-wide meetings is a challenge, therefore several sessions have taken place over the whole day to have easy access form Asia, Europe and the US.In 2016, Fraunhofer IZM teamed up with a group of industry leaders from Europe, the US, and Japan to develop the fundamental processes for new panel level packaging technologies that are ready to transition to industrial-scale high-volume production. The first incarnation of Panel Level Packaging Consortium (2016–2019) consisted of 17 international partners from industry and was judged to be a high-powered and impactful project, having a recognized expert for substrate technologies and wafer-level packaging at its helm in the form of the Fraunhofer Institute of Reliability and Microintegration. For its first run, the focus of the consortium was on the entire process chain in panel-level packaging: from assembly, molding, wiring, and cost modelling to standardization.

With the second consortium launched for 2020–2022, this focus has shifted to die placement and embedding technology for ultra-fine-line wiring down to 2 µm lines and space with a potential move to 1 µm. As such, migration effects and ways to exploit the migration limits of fine line wiring have become areas of interest for the consortium’s international members, including another 17 partners from industry: Ajinomoto Fine-Techno Co., Amkor Technology, ASM Pacific Technology Ltd., AT&S Austria Technologie & Systemtechnik AG, Atotech, BASF, Corning Research & Development Corporation, Dupont, Evatec AG, FUJIFILM Electronic Materials U.S.A., Intel Corporation, Meltex Inc., Nagase ChemteX Corporation, RENA Technologies GmbH, Schmoll Maschinen, Showa Denko Materials Co. Ltd (former Hitachi Chemical Company, Ltd), and Semsysco GmbH.

The PLC 2.0 project has again made excellent progress: New equipment for panel level packaging had been installed during the run-up to the PLC 2.0, and the project benefits from several major investments made by the German Federal Ministry of Education and Research to promote the Research Fab Microelectronics Germany. The impact of the global COVID-19 pandemic and the subsequent lockdown restricted access to laboratory work and to the research network of the Fraunhofer IZM, leading to the work plan for the PLC 2.0 being extended by 4 months. All meetings of the first year were organized in virtual format with two dedicated sessions for the relevant Asia and US time zones.

One major focus of the project has been the investigation of warpage and die shift in large format reconfigured panels (18” x 24”), and considerable progress has already been made towards understanding the root causes. With these insights, the relevant parameters can now be controlled better to enable large-area fine-line RDL processes. The analytical effort has paid off, as RDL could be scaled down considerably on the panel level, making the most of the advantages of both wafer and panel-level technologies and paving the way for an entirely new process chain with new equipment and materials.

Building on this achievement, the consortium’s partners are now expecting twelve months of agile progress with developing and managing viable process options on the road to a complete high-yield process chain. The test structures for electrochemical migration tests were also designed in accordance with the IPC standard; the design of the test vehicles was guided by the standard’s description of the IPC multi-purpose test board, but with the structure sizes matched to the geometries reflecting the goals of the PLC 2.0 project as interdigital structures. Researching a combination of economic and environmental assessments to promote more sustainable production approaches is another strong part of the PLC 2.0. A first model to estimate the carbon footprint of the PLP technology has already been established. This first calculation will help all members to identify the most energy intensive stages and further improve the data quality in the most relevant steps.

Tanja Braun, Group Leader at Fraunhofer IZM, is the public face of the Panel Level Consortium: “What makes me happy about our work is seeing such a diverse consortium coming together and making progress towards one shared goal: Finding future manufacturing technologies for maximum integration density on the panel level.”

Source

]]>
news-2362Wed, 11 Aug 2021 13:47:32 +0200UVC calibration standards with accredited test procedure https://photonicnet.de/Instrument Systems test lab develops traceable UV A/B/C reference sources for the calibration and testing of UV measuring equipment. Instrument Systems has been accredited for tests in the field of lighting technology to DIN EN ISO / IEC 17025 since 2009 and is now offering accredited testing of radiant flux and luminous flux with the “Goniospectroradiometry of optical radiation sources” procedure.This procedure has enabled the development of UVC-LED reference sources with traceable reference values of maximum precision for radiant flux and irradiance. These reference sources are used for monitoring and calibrating UV measuring equipment, e.g. the ISP-PTFE series.
The accreditation of test labs is extremely important for photometry customers. With it they receive the assurance that their measuring equipment delivers reliable and traceable results. At the same time, the accredited testing of the measuring instruments often used in production guarantees the high quality of the final products and instills a high level of confidence in the final customer. Instrument Systems therefore maintains a test lab accredited to DIN EN ISO / IEC 17025 that offers traceable tests of all relevant photometric and radiometric measurands from UV to the NIR range with numerous measuring procedures and is flexibly and securely positioned for the future.
The highly experienced lighting technology engineers at Instrument Systems developed a test procedure that is conformant with standard CIE 239:2020 and accredited for the production of high-precision UV-LED reference sources. The traceable reference values for radiant flux are determined by the measurement of UV-LED sources with a goniospectroradiometer consisting of a high-precision goniometer of the LGS series and a CAS spectrometer – likewise traceably tested by the test lab – with an irradiance optical probe. Extremely low extended measurement uncertainties (k=2) of reference values of only 4.5% (UVC), 3.5% (UVB) and 2% (UVA) can be achieved with this combination. Details of the procedure have been published in several trade magazines: LpS Digital Conference Proceedings 2021 (EN), ELEKTRONIKPRAXIS 11/2021 (DE), LEDs Magazine, September 2020 (EN).

Kontakt:
Instrument Systems Optische Messtechnik GmbH
Kastenbauerstr. 2
81677 München
E-Mail: info(at)instrumensystems.com
Internet: www.instrument-systems.com

]]>
NewsFrom the member companiesNew productspress report
news-2357Tue, 10 Aug 2021 15:07:00 +0200Initiative QuNET demonstrates highly secure and practical quantum communicationhttps://photonicnet.de/Today, two German federal authorities communicated via video for the first time in a quantum-secure manner. The QuNET project, an initiative funded by the German Federal Ministry of Education and Research (BMBF) to develop highly secure communication systems, is thus demonstrating how data sovereignty can be guaranteed in the future. This technology will not only be important for governments and public authorities but also to protect everyday data.It was a foretaste of the communication of the future - or rather, the "data security" of the future. Because when Federal Research Minister Anja Karliczek invited members of the Federal Office for Information Security (BSI) to a video conference today, everything looked the same, at least for outsiders. Together with Andreas Könen, Head of Department CI "Cyber and IT Security" at the Federal Ministry of the Interior, Building and Community (BMI) and BSI Vice President Dr. Gerhard Schabhüser, the minister talked via video stream.

And yet this videoconference opens a new chapter in the highly secure communication of the future. Because what the eye can't see: The conversation was not encrypted using conventional methods but by means of light quanta. The trick is that if an attacker tries to access the to be generated keys, which are later used for data transmission, the light particles are manipulated. This manipulation is detected together by the sender and receiver, thus preventing an interception attempt. The detection is based on physical principles. If an eavesdropping attempt is discovered, the key is discarded and a new one is generated. By means of this strategy, only private keys are kept and therefore long-term security of the agreed keys is achieved. This sets a new milestone for data confidentiality in the digital world.

A new chapter for the highly secure communication of the future

This so-called "quantum communication" will become necessary in the light of future technological developments: In the future, quantum computers and new algorithms are expected to be able to crack previously used methods of data encryption. According to the motto "store now, decrypt later", data can already be stored today and read later, e.g., with the aid of more powerful computers.

This threatens especially data that requires long-term protection, i.e., data that will still be of great value to hackers in the distant future. This includes not only information from governments and authorities, but also corporate secrets or personal health data of citizens.

Federal Minister of Education and Research Anja Karliczek explained: "Quantum communication is one of the key technologies that play a crucial role in IT security and can help us prepare for future threats. This is so important because cyber security and cyber sovereignty are preconditions for the stability of democracy and also why I launched the QuNET initiative two years ago. QuNET is an important driver of the translation of findings from basic research on quantum communication into systems that are suited for everyday use. Our objective is to take advantage of the work of QuNET and the other projects on quantum communication funded by the Federal Research Ministry to lay the foundations for an ecosystem of producers and providers of quantum communication solutions in Germany. In this way, we can ensure the swift translation of innovative technologies and components into broad application. "

In order to be able to protect the privacy of citizens as well as states and companies in the future, there is already a great need for action today. It is not just a matter of developing new and highly secure communication systems based on quantum know-how but also of finding ways to integrate this new technology into existing IT infrastructures (e.g., fiber optic cables) and to take established cryptographic processes into account. There is also a particular challenge when it comes to long distances. Here, satellites can play a central role.

Long-term data security through encryption with quantum

The QuNET initiative pursues the goal of enabling long-term data security. On the way to achieving this goal, today researchers from all participating institutes realized the first quantum-based video conference between BMBF and BSI in Bonn, Germany. The focus of the QuNET work is the so-called "quantum key exchange", also known as QKD (short for "Quantum Key Distribution"). QKD enables the exchange of symmetric keys whose security can be quantified. The BSI is supporting the QuNET initiative and is preparing accompanying and independent test criteria in international cooperation.

At the end of last year, the research organizations involved in the initiative - the Fraunhofer-Gesellschaft, the Max Planck Society and the German Aerospace Center (DLR) - presented important basic principles for modern and secure communication standards. Accordingly, the scientists have further developed the overall architecture for systems for quantum-safe communication, as well as possibilities for exchanging quantum keys over long, medium and short distances using free-space and fiber systems.

In the setup of the first quantum-based videoconference between BMBF and BSI, multiple free-space and fiber quantum channels have been used. This corresponds to a more complex scenario than a connection via a single quantum channel. Besides the video conference aspect of the demonstration, the set-up was also used to produce scientific data which might give important insights for communication in complex quantum secure networks of the future.

SOURCE

]]>
news-2360Thu, 05 Aug 2021 13:56:00 +0200PicoQuant and Seven Solutions jointly release white paper on synchronizing TCSPC units in a White Rabbit timing networkhttps://photonicnet.de/Free paper demonstrates the impact of synchronization protocol on the time accuracy of MultiHarp devices connected via Low Jitter White Rabbit switchesIn a recent paper, researchers from PicoQuant have demonstrated that synchronizing Time-Correlated Single Photon Counting (TCSPC) devices in a White Rabbit timing network has only a negligible effect on their time accuracy. Multiple devices from PicoQuant’s MultiHarp product line were connected using Low Jitter White Rabbit switches from Seven Solutions the leading manufacturer of White Rabbit components. The authors have investigated how various network topologies, optical fiber lengths, and presence of Ethernet traffic affects the time accuracy of connected MultiHarp 150 and MultiHarp 160 devices.

Download the free white paper from PicoQuant’s or Seven Solutions’ website to learn more about the flawless interoperability of the MultiHarp devices with the switches from Seven Solutions. The experiments described in the paper demonstrated that - when using White Rabbit - the excellent timing performance of the MultiHarp can be maintained for reasonably sized networks and a timing jitter of less than 45 ps rms can be expected for such cases. Furthermore, the authors showed that the impact of fiber length differences of up to 5 km or simultaneous Ethernet data transmission was negligible.

White Rabbit technology is an open source project aimed at realizing an Ethernet-based net-work permitting simultaneous sub-nanosecond synchronization over long distances. White Rabbit is a powerful technology that allows synchronizing large numbers of detection channels over long distances without having to sacrifice any of the aforementioned channels for this pur-pose, which makes it highly valuable for a range of emerging applications such as e.g., quan-tum communication.

Source

]]>
news-2332Wed, 07 Jul 2021 14:26:00 +0200Dutch Royals Visit Photonics in Berlin https://photonicnet.de/On July 7, the photonics community in Berlin enjoyed a public event with some rare guests: During their visit of the German Capitol Berlin, the Royal couple of the Netherlands visited a meeting of OpTecBB, the local photonics network, and PhotonicsNL. The latter is the national photonics network of the Netherlands. Both societies signed a memorandum of understanding at this occasion.The Berlin metropolitan region has a rich history in optics, photonics and quantum technology. Research and industry went hand in hand here, from eye glass development or the first electric light bulb to modern EUV lithography. Many of these developments were shared with Dutch organizations.
Two of the city’s leading institutions hosted the royal visit: Technische Universität Berlin, an institution with a major research focus on photonics and optical systems, and the Fraunhofer Heinrich Hertz Institute, an organization with an international reputation for research into quantum and non-quantum communication networks, artificial intelligence, and photonic integrated circuits.
During the royal visit, the ceremonial Atrium at Technische Universität Berlin was transformed into a showcase for light-based future technologies and German-Dutch cooperation. At the start of the program, competence networks Optec-Berlin-Brandenburg and PhotonicsNL officially celebrated their collaboration and signed a Memorandum of Understanding to increase this cooperation further and used the occasion to promote the global competitiveness of Europe as a center of Photonics innovation.
Professor Dr. Martin Schell, head of OpTecBB and director of the Fraunhofer HHI said “Together, we want to strengthen cooperation in research and development, promote the mutual exchange of expertise, thus improving our position in the worldwide competition for excellence.”
TU Berlin itself as host institution provided two glimpses into the future of photonics and quantum research. Firstly, its projects working to smooth the path to a global quantum Internet and open up collaboration with the Dutch QuantumDelta cluster, and secondly the unique, Berlin-wide Berlin School of Optical Sciences and Quantum Technologies doctoral program, which trains the next generation of top researchers and develops strong connections with Dutch partner institutions.
The economic potential of photonics in the Berlin region was demonstrated by the 35 scientific institutions and 400 businesses active in this area. Among these was traditional optics manufacturer Berliner Glas. Founded in 1952, Berliner Glas was acquired by ASML, a Dutch-based world leader in production systems in the semiconductor industry, last November 2020. Both companies attended the event in the Atrium and presented their latest technologies for chip production as well as their current plans for expansion in Berlin, including new infrastructures and measures to increase the 1000-strong workforce (400 more high-tech jobs to be staffed in the next 18 months).
The Fraunhofer Heinrich Hertz Institute (HHI) provided examples for how research can be put into practice and how German-Dutch cooperation is creating a leap forward in European Photonics innovation. The miniaturized BB84 transmitter chips developed by researchers at the HHI are so small that they can only be viewed under a microscope, but their impact could scarcely be greater as they provide the necessary technology to make communications and IT systems faster, more energy efficient and more secure. For very precise tunable lasers, the researchers are working closely with Dutch start-up LioniX as well as PhotonDelta, a consortium committed to developing strong European networks in the areas of photonics research.

]]>
news-2323Tue, 29 Jun 2021 08:30:00 +0200Register now for the ISLC 2021 conference –the international semiconductor laser community meets in Potsdam, Germanyhttps://photonicnet.de/In October 2021, the renowned International Semiconductor Laser Conference (ISLC) will be heldin Germany–for the first time in nineteen years and in person. Interested participants can register now – early bird registration until July 30.The Berlin-based Ferdinand-Braun-Institut  (FBH)  will  host  the  International  Semiconductor Laser  Conference  (ISLC)  as  a  hybrid  event  in  Potsdam  from  October  10  to  14,  2021. This makesthe  ISLC  one  of  the  very  first  in-person  international  laser  conferences  since  the COVID-19 outbreak.People interested in the conference who cannottravel to the eventare welcome to participate online.

The ISLC is dedicated to latest developments in semiconductor lasers, amplifiers and LEDs. Itrepresentsexcellence from all global regions and in all areas of currently active semiconductor laser research. The program committee has selected the top 100 papers for oral and poster presentations  from  the  conference submissions.  An  extensive  program  complementsthe conference, including renowned speakers and workshops on topics such as automotive LiDAR and photodetection.

The program with all contributions will soon be available on the conference website, which will be   continuously   updated –among  other   things, a   post-deadline  session   is   planned: www.islc2021.org.

Register now for the ISLC

Registration for participation is now open on the conference website –until July30at the Early Bird price.For more information, please click here: https://www.islc2021.org/registration

More about ISLC

The ISLC has more than 50years of tradition, attended by a highly international audience and with  locations  cycling  between  the  Americas,  Asia/Australia  and  Europe/Mid-East/Africa regions every two years. Since its founding, many new and ground-breaking semiconductor devices have been first presented at this conference. The ISLC was last in Germany in 2002. ISLC 2021and the associated exhibition areorganized by the Ferdinand-Braun-Institut, Berlin and supported by IEEE Photonics Society as technical sponsor.

Topics include: semiconductor optical amplifiers, silicon compatible lasers, VCSELs, photonic band-gap  and  microcavity  lasers,  grating  controlled  lasers,  multi-segment  and  ring  lasers, quantum  cascade  and  interband  laser,  sub-wavelength  scale  nanolasers,  mid  IR  and  THz sources,  InP,  GaAs  and  Sb  materials,  quantum  dot  lasers,  high  power  and  high-brightness lasers,  GaN  and  ZnSe  based  UV  to  visible lasers  and LEDs,  communications  lasers, semiconductor integrated optoelectronics.

SOURCE

]]>
news-2290Thu, 27 May 2021 08:38:20 +0200Dispelix and OQmented Form Strategic Partnership for the Development and Commercialization of Dispelix LBS Waveguides and OQmented LBS MEMS solutionshttps://photonicnet.de/The partnership’s initial focus is to jointly develop high performance laser beam scanning solutions for Augmented Reality applications

Espoo, Finland; and Itzehoe, Germany, May 25, 2021 - Dispelix, the world leader in Waveguide Displays for Augmented Reality Eyewear, and OQmented, the global leader in developing high performance MEMS mirror-based ultracompact projectors, have entered a strategic partnership to collaborate on the development and commercialization of MEMS-based laser beam scanning (LBS) technology. OQmented LBS MEMS technology contributes unmatched performance and is noted to be exceptionally compatible with Dispelix’s LBS waveguides for top-notch AR applications.

The full press release can be found here.

]]>
news-2276Wed, 05 May 2021 20:46:59 +0200OQmented Joins LaSAR Alliance for Augmented Reality Wearable Deviceshttps://photonicnet.de/Alliance formed to accelerate development of augmented reality eyewear applications Itzehoe, Germany, May 05, 2021 - OQmented, a deep tech startup developing top-notch MEMS-based laser beam scanning technology, announced today that it has joined the newly established LaSAR Alliance (Laser Scanning for Augmented Reality). The alliance was launched by five founding members as a member program of the IEEE Industry Standards and Technology Organization (ISTO), an international federation promoting industry standards and technologies in the electro-technical sector.

The LaSAR Alliance was established to create an ecosystem to enable the efficient design and manufacture of augmented reality (AR) wearable devices, including smart glasses and headmounted displays. The alliance aims to facilitate the exchange and sharing of information, to create, build and grow effective and compelling LBS (Laser Beam Scanning) -based solutions and to help drive the growth of the market for AR wearables in general.

“LaSAR welcomes OQmented to the Alliance and looks forward to their contributions to building the solid foundation on which we can all drive the growth of augmented reality wearable devices through laser beam scanning solutions,” said Dr. Bharath Rajagopalan, Chair of the LaSAR Alliance and Director, Strategy Marketing at STMicroelectronics. “OQmented offers 25 years of experience in the development of customized, ultracompact, resonant 1D and bi-resonant 2D MEMS scanners, and we expect their participation to further fuel the technology and grow this dynamic market.”

The use cases for augmented reality technology are manifold: remote collaboration in theworkplace, training situations, education, manufacturing or entertainment are among them. PwC estimates that by 2030, virtual and augmented reality will boost the global GDP by USD 1.5 trillion.1 OQmented is developing technology that is a key enabler for AR mobile and stationary devices. The company has a strong background in electronics, drive and sync, combined with software expertise. Their unique Lissajous scan pattern and the vacuum encapsulation Bubble MEMS® technology2 enable highest resolution, lowest energy consumption and smallest chip size, at the same time guaranteeing long-term reliability for the hermetically sealed micro mirrors.

“We are excited about the forum that LaSAR provides to exchange with the other members and potential partners and strongly believe that the creation of a dynamic network is a crucial step for the advancement of AR wearables,” said Dr. Ulrich Hofmann, CEO/CTO and co-founder of OQmented. “With our unique Lissajous scan pattern and the Bubble MEMS® technology, OQmented can contribute complementary solutions to the alliance which did not exist this way before, providing new possibilities for the potential customers. Numerous applications can profit from this key enabling technology,” he added.

For more information about the LaSAR Alliance visit lasaralliance.org

 

About OQmented

OQmented is a deep tech company developing and selling high performance MEMS mirrors for ultracompact LBS displays and best in class 3D sensing solutions for mobile and stationary applications. The unique Lissajous scan pattern in combination with the patented vacuum packaging Bubble MEMS® technology and proprietary electronics and software enable new product categories in consumer and various other industries. Further information can be found at www.oqmented.com.

For Press Information Contact:
Judith Woehl
Public Relations
OQmented
Email: media(at)oqmented.com

__________________________________________________

1 https://www.pwc.com/seeingisbelieving
2 Bubble MEMS® is a patented 3D glass-encapsulation approach to hermetic vacuum sealing of the MEMS mirrors

]]>
news-2230Thu, 01 Apr 2021 12:42:07 +0200STMicroelectronics and OQmented to Jointly Develop, Manufacture, and Market Advanced MEMS Mirror-Based Laser-Beam Scanning Solutionshttps://photonicnet.de/Agreement focuses on increasing development and capacity for ultra-compact, low-power laser-beam scanners to expand the marketGeneva, Switzerland; and Itzehoe, Germany, March 29, 2021 -- STMicroelectronics (NYSE: STM), a global semiconductor leader serving customers across the spectrum of electronics applications, and OQmented, a deep-tech startup focused on MEMS1-mirror technology, have agreed to collaborate on the advancement of the technology for Augmented Reality and 3Dsensing markets. The joint effort aims to build on the expertise of both companies to advance the technology and products behind the leading MEMS-mirror-based laser-beam scanning (LBS) solutions in the market.

The official press release can be found here.

 

 

]]>
news-2214Wed, 24 Mar 2021 08:24:39 +0100Laser Components wins Prism Award 2021 with LaserLighthttps://photonicnet.de/SMD Chip Opens up New Application Possibilities in the Security Sector LaserLight SMD W-IR, the world’s first white light chip with a switching function, received the Prism Award 2021 from SPIE, the international society for optics and photonics. On command, the light source transforms into an IR emitter with 905 nm or 850 nm. Both light sources are housed on the same 7×7 mm chip. SMDs are optionally available with a starboard to facilitate mounting on the circuit board.With a luminous flux of 450 lumens and a luminance of 1000 Mcd/m², the KYOCERA SLD Laser product offers all the advantages of LaserLight white light technology, such as a long range and narrow beam angle, even in this dual function. The IR wavelengths are emitted with an output power of 250 mW.

The IR wavelengths of the SMD W-IR are mainly used in motion sensors, night vision cameras, and other professional security systems. This new development opens up numerous application possibilities. Instead of placing motion sensors and lighting in two different components, one element can perform both functions. For example, a surveillance camera automatically illuminates the corresponding area as soon as it detects something suspicious.

This chip is distributed in Europe and the USA by LASER COMPONENTS.

 » More information

Contact:
LASER COMPONENTS GmbH
Werner-von-Siemens-Str. 15
82140 Olching
E-Mail: info(at)lasercomponents.com
Internet: www.lasercomponents.com

]]>
NewsFrom the member companiesNew productsPrizes and awardspress report
news-2192Mon, 15 Feb 2021 16:13:00 +0100VI Systems demos 224G VCSEL https://photonicnet.de/VI Systems arranged a record speed data transmission demonstration of up to 224 Gbps using their new generation of 850 nm vertical cavity surface emitting laser (VCSEL). VI Systems demonstrated a VCSEL data transmission at 224 Gbps using a standard telecom modulation format. In the setup the new generation of 850 nm VCSEL chips of the company were used. The experiment confirms that VCSEL based optical interconnects can also become available for the next generation of serial speed upgrade.

Details of the data transmission experiment will be presented at the Photonics West 2021 Digital Forum from March 6-11, 2021.

The presentation will be available on-demand on March 6:  https://spie.org/photonics-west/presentation/NRZ-DB-and-DMT-performance-for-short-reach-VCSEL-based/11692-10

 

About VI Systems GmbH
VI Systems GmbH, based in Berlin, Germany, is a fabless developer and manufacturer of components for optical communication and sensing. More information about VI Systems is available at www.v-i-systems.com

 
Press Contact:
George Schaefer
VI Systems GmbH
Hardenbergstrasse 7
10623 Berlin, Germany
phone: +49 30 30 831 43 41
fax:    +49 30 30 831 43 59
email:  George.Schaefer(at)v-i-systems.com

]]>
news-2181Tue, 09 Feb 2021 12:00:00 +0100Laser Technology for Agriculture 4.0https://photonicnet.de/With climate change, uncertainties in food security, and pressure to preserve resources, agriculture is facing difficult tasks. To meet these challenges with cost-effective and intelligent electronic solutions, researchers at Fraunhofer IZM are working with partners to combine smart system integration with sensor technology, thus enabling the leap to Agriculture 4.0. In an earlier project they developed a laser that uses optical detection and AI evaluation to prevent infestation with harmful insects in warehouses and that is intended to replace the usual fumigation.Between the cultivation of grain and its consumption lies the real work of farmers. The growth of the plants must be continually monitored, the soil quality checked, and harmful insects eliminated — processes that cost both time and money. To modernize them, Fraunhofer IZM and the TU Berlin are involved in the ZIM network “AgriPhotonik” which brings together 29 German and Israeli partners from industry and research to establish digital processes in agriculture by using the potential of agricultural technology and photonics. The network management is handled by the OpTecBB competence network.

In the precursor project “Insect Laser”, supported by the Federal Office for Agriculture and Food and partners, a solution was developed at Fraunhofer IZM to protect the agricultural stock from contamination by grain weevils and Indian meal moths. Though barely four millimeters long, these pests can cause significant economic damage and carry diseases.

It is common practice to fumigate storage spaces with chemicals only after an infestation with harmful insects. These chemicals, such as hydrogen phosphide, are deadly to the insects but can be used only sparingly. When used more frequently, residues on the stock can cause health hazards to humans and, above all, environmental pollution.

To reduce the use of chemical protective agents, the researchers at the Fraunhofer Institute for Reliability and Integration IZM set out to combine laser technology and automated image recognition to reliably ensure the safety of agricultural products. The project was coordinated by the Julius Kühn Institute in Berlin.

The researchers detect the moment of infestation before the pests can spread throughout the stocks. Using an image-processing method developed by the BTU Cottbus (Brandenburgische Technische Universität Cottbus), the small pests are detected on the surface of the supplies or on walls. An AI system then analyzes and classifies the insects and compares them against reference images. Such algorithms for image recognition are already established in countless applications. In this project, however, the wide variety of dimensions was especially challenging, since harmful insects that are only a few millimeters in size need to be reliably detected in the warehouses. This had to be taken into account in the design and production of the IZM laser system.

Once the position of a pest is known, a fine laser beam is directed to the relevant coordinates via radio by a scanner, rendering the corn weevil or Indian meal moth harmless. Because of the low temperature and intensity of the laser, the grains located underneath are unaffected.  By using a laser system, direct primary infestation is prevented, so that insects harmful to supplies do not spread in the first place.

The Fraunhofer IZM researchers in Berlin examined how different wavelengths and light beam intensities influenced the movement behavior of the pests and found that the infrared light had the lowest effect on the characteristic movement behavior used to identify the animals. The researchers were also significantly involved in developing the laser system, and initially created a laboratory setup. Following successful testing, they transferred this set-up into a compact insect laser system consisting of several units for use in test cells.

They also developed the interfaces for software and hardware between camera, laser, and scanner.

With these activities, Fraunhofer IZM is opening up to projects that will increase digitalization and automation in agriculture. In doing so, the researchers integrate optical sensors and electronic controls into unique systems and ensure that these can be manufactured efficiently and used sustainably.

(Text: Olga Putsykina)

PR-Contact:

Susann Thoma
Tel.: +49 30 46403-745
Email: susann.thoma(at)izm.fraunhofer.de 

 

 

]]>
news-2076Thu, 15 Oct 2020 13:24:15 +0200CSEM: Alexandre Pauchard to succeed Mario El-Khoury as the new CEO of CSEMhttps://photonicnet.de/The Board of Directors has appointed Alexandre Pauchard as the new Chief Executive Officer (CEO) of CSEM. His appointment will be effective as of 18 January 2021. He will succeed Mario El-Khoury, who has successfully led the Center since 2009.CSEM is opening a new chapter. After 11 years at the helm of the Center, Mario El-Khoury, 57, is leaving his position as the head of CSEM to devote himself to personal projects. He is to be replaced by Alexandre Pauchard, who currently works for BOBST.

Arriving at CSEM in 1994, Mario El-Khoury, a Lebanese-Swiss engineer, held multiple leadership and executive positions before being appointed the role of CEO in 2009. Through his direction, he successfully managed to position CSEM as a key player in the development and transfer of cutting-edge technologies to benefit Swiss companies. A champion of innovation in all its forms and a passionate advocate for maintaining production in Switzerland, he has initiated several strategies aimed at digitizing Swiss SMEs to guarantee their competitiveness.

Under his leadership, CSEM has experienced unprecedented growth and development, with the number of employees increasing from 387 to 525. In 2013, he successfully established CSEM’s PV-Center, which fosters innovation in photovoltaics. He encouraged the Center’s growth in the MedTech and Additive Manufacturing domains and recently helped oversee the launch of the Tissot T-Touch Connect Solar, Switzerland's first connected watch, whose operating system and watch dial were developed at CSEM.

“Mario El-Khoury is an extraordinary director, who has allowed CSEM to shine both internationally and in Switzerland. We are extremely grateful on many levels for the excellent work he has done for us,” acknowledges Claude Nicollier, Chairman of the Board of Directors. “Working within this unique and magnificent organization has been an exceptional opportunity,” adds Mario El-Khoury, “my gratitude goes out to my colleagues, Chairman Claude Nicollier, and the members of the Board of Directors. Their unwavering support has enabled CSEM to strive for excellence without losing its humanity.”

Head of Group R&D at BOBST, Alexandre Pauchard, 49, will take over the reins of the Center on the 18 January 2021. He will jointly manage CSEM alongside Mario El-Khoury until Mr. El-Khoury’s departure on 28 February 2021. Alexandre Pauchard has lived in both California and Zurich, graduated with a degree in Physics from ETH Zürich, and holds a doctorate in microengineering from EPFL. He brings with him to CSEM extensive technical and managerial experience, and his dynamism perfectly complements the Center, whose future operations seem set to continue along a steady path. “We are very enthusiastic about Alexandre’s appointment and look forward to working with this competent new leader,” says Claude Nicollier. “His past activities align exactly with CSEM’s areas of expertise, and his strong motivation to pursue the Center's objectives, ensuring it remains a center of technological excellence and innovation, and guaranteeing the transfer of our products and research to the Swiss industry gives us full confidence in CSEM’s future.”

Further information

Contact:
CSEM SA
Rue Jaquet-Droz 1
2002 Neuchâtel
Schweiz
Email: info(at)csem.ch
Internet:www.csem.ch

 

]]>
NewsFrom the member companiespress report
news-2147Mon, 05 Oct 2020 11:35:00 +0200Search for traces of microplastics in humans: New joint research project funded https://photonicnet.de/The PlasMark project, which has been awarded 4.5 million Euros by the Federal Ministry of Education and Research, will start in October 2020 with the aim of investigating the consequences of microplastics in the human body. Methods from astrophysics will be applied. The multidisciplinary research team from the fields of physics, biochemistry, biology and pharmacy is focusing on the question of how label-free diagnostics of plastic particles is possible. "We focus on three different state-of-the-art technologies," explains Prof. Martin Roth from the innoFSPEC research centre at the Leibniz Institute for Astrophysics Potsdam (AIP). "In addition to confocal Raman spectroscopy and terahertz spectroscopy, which we know from the so-called body scanners at the airport, the suitability of multispectral light and electron microscopy for this purpose is being investigated.”

All three approaches - partly borrowed from astrophysics - are suitable for making statements about the chemical composition of a particle as well as visualising it. Raman spectroscopy take advantage of the fact that matter interacts with laser light, leaving behind a characteristic fingerprint - a spectrum in the scattered light. In this way it is also possible to assign the plastic particles to their original material - e.g. polyethylene, polystyrene or PVC. While this works well for sufficiently large pieces of plastic, the challenge for the team is to detect these fingerprints for small and minute particles. In addition, successfully scanning tissue samples with conventional Raman microscopes is very time-consuming and can take many hours to days. The innoFSPEC research centre at the AIP has set itself the goal of realising an imaging Raman spectroscopy setup that allows the identification of plastic particles within minutes or seconds. This is made possible by wide field spectrographs from astronomy - where this technique is used in observatories to save valuable observation time.

The joint project supports research at three Centres for Innovation Competence (ZIK) in the new federal states: ZIK plasmatis at the Leibniz Institute for Plasma Research and Technology Greifswald (INP), ZIK HIKE at the University Medical School and University of Greifswald and ZIK innoFSPEC at the Leibniz Institute for Astrophysics in Potsdam (AIP). The first results are expected to be available in two years' time in order to be able to better answer the question to what extent the contamination of the environment and thus of the human body with microplastic particles is one of the causes of neurodegenerative diseases, cardiovascular diseases or even cancer.  

Press release of the Leibniz Institute for Plasma Science and Technology e.V. (INP)

https://www.inp-greifswald.de/de/aktuelles/presse/pressemeldungen/2020/folgen-von-mikroplastik-und-nanoplastik-im-menschen/ 

Science contact AIP | innoFSPEC

Prof. Dr. Martin M. Roth, 0331 7499 313, mmroth(at)aip.de 

Media contact

Franziska Gräfe, 0331 7499 803, presse(at)aip.de   

The key areas of research at the Leibniz Institute for Astrophysics Potsdam (AIP) are cosmic magnetic fields and extragalactic astrophysics. A considerable part of the institute's efforts aim at the development of research technology in the fields of spectroscopy, robotic telescopes, and e-science. The AIP is the successor of the Berlin Observatory founded in 1700 and of the Astrophysical Observatory of Potsdam founded in 1874. The latter was the world's first observatory to emphasize explicitly the research area of astrophysics. The AIP has been a member of the Leibniz Association since 1992.

 

LinkedIn Post

]]>
news-1807Fri, 24 Jan 2020 22:42:26 +0100LASER COMPONENTS Takes the Initiativehttps://photonicnet.de/Application for RoHS Exemption for PbX Detectors CompletedTogether with customers at home and abroad, LASER COMPONENTS has taken a leading role in the industry and made every effort to ensure that the supply of PbX detectors remains secure. These companies have applied for exemption from the RoHS regulations in Brussels.

The EU directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS 2) contains a list of chemical elements and compounds that may no longer be used in electronic products. This includes lead in concentrations above 0.1%. The legislators are primarily concerned with tin solder that contains lead. However, this heavy metal is also a crucial component in the PbS and PbSe detectors manufactured by the LASER COMPONENTS Detector Group.

Manufacturers can apply for exemptions from this rule if a product is indispensable for certain applications. Annex IV, point 1c of the directive explicitly mentions lead used in infrared detectors. Together with its customers, LASER COMPONENTS has formed a consortium that has been able to prove that an alternative to using lead salt detectors in certain areas is not available.

“Many SMEs would simply be overwhelmed with the burden of EU law if they tried to take it on themselves,” says Sven Schreiber, who coordinated the activities at LASER COMPONENTS. “As a well-known player in the international detector market, we have taken the initiative. We are confident that our application will be granted. This would benefit all market participants for another seven years. At that time, the exemption will be renewed.”

>> More information

Your contact person:
Walter Fiedler
+49 (0) 8142 2864-729
w.fiedler(at)lasercomponents.com

 

]]>
news-1805Fri, 24 Jan 2020 22:10:11 +0100Optical frequency measurement to the 21st significant digithttps://photonicnet.de/TOPTICA’s frequency comb DFC CORE+ demonstrates world record stability, as reported in an article by scientists of the Physikalisch-Technische Bundesanstalt (PTB) Braunschweig, Germany and TOPTICA.TOPTICA’s frequency comb DFC CORE+ demonstrates world record stability, as reported in an article by scientists of the Physikalisch-Technische Bundesanstalt (PTB) Braunschweig, Germany and TOPTICA.

This paves the way for a future improvement of some of the most sensitive instruments ever created: optical clocks and gravitational wave detectors. Both benefit from transferring the ultimate stability to a specific wavelength.

Read the text online. Download a high-resolution image here.

TOPTICA Photonics AG
Lochhamer Schlag 19
82166 Graefelfing, Germany
www.toptica.com

---------------------------------------

TOPTICA has been developing and manufacturing high-end laser systems for scientific and industrial applications for 20 years. Our portfolio includes diode lasers, ultrafast fiber lasers, terahertz systems and frequency combs. The systems are used for demanding applications in biophotonics, industrial metrology and quantum technology. TOPTICA is renowned for providing the widest wavelength coverage of diode lasers on the market, providing high-power lasers even at exotic wavelengths.
Today, TOPTICA employs 300 people worldwide in six business units (TOPTICA Photonics AG, eagleyard Photonics GmbH, TOPTICA Projects GmbH, TOPTICA Photonics Inc. USA, TOPTICA Photonics K.K. Japan, and TOPTICA Photonics China) with a consolidated group turnover of € 60 million.

]]>
news-1473Thu, 24 Jan 2019 10:58:00 +0100Jahresauftakt bei ZEISS in Jenahttps://photonicnet.de/Fokus auf erfolgreiche Entwicklung am Standort und Jubiläumsjahr der Mondlandung ZEISS hatte gestern Abend zum Jahresauftakt in Jena eingeladen: Zu den rund 300 Gästen gehörten Kunden und Geschäftspartner sowie Vertreter von Politik, Wissenschaft und Bildung und des öffentlichen Lebens in Thüringen und Jena.

Grußworte überbrachten für den Freistaat Thüringen Ministerpräsident Bodo Ramelow und für die Stadt Jena Oberbürgermeister Dr. Thomas Nitzsche. Der Vorstandsvorsitzende der Carl Zeiss AG, Prof. Dr. Michael Kaschke, gab einen Überblick über die Entwicklung der ZEISS Gruppe. Der weitere Abend war anlässlich des 50-jährigen Jubiläums der ersten Mondlandung am 21. Juli 1969 der Raumfahrt gewidmet. In einem Dialog sprach Kaschke mit den beiden Raumfahrern Dr. Sigmund Jähn und Prof. Dr. Reinhold Ewald über ihre Missionen im All.

Robust und widerstandsfähig für die Zukunft gerüstet
Kaschke konnte auf das vergangene Geschäftsjahr 2017/18 als wiederum eines der erfolgreichsten in der Geschichte von ZEISS verweisen. Dabei haben alle vier Sparten der ZEISS Gruppe zum Erfolg beigetragen. Er würdigte das Engagement, das Wissen und die Tatkraft aller ZEISS Mitarbeiter weltweit, die zu dem Rekordumsatz von 5,8 Milliarden Euro beigetragen haben.

Er hob ebenfalls hervor, dass die in Jena ansässige Carl Zeiss Meditec AG seit Ende Dezember 2018 aufgrund der nachhaltig erfolgreichen Entwicklung in den MDAX aufgestiegen und dort das einzige Unternehmen aus den ostdeutschen Bundesländern sei.
Angesichts abflauender Konjunktur, zunehmenden Protektionismus und anderer Hemmnisse soll eine fokussierte Investitions- und Innovationsstrategie ZEISS laut Kaschke noch widerstandsfähiger machen. Basis sei ein an Megatrends ausgerichtetes Portfolio mit verstärktem Blick auf Produktivität und Effektivität. ZEISS investierte im abgelaufenen Geschäftsjahr knapp elf Prozent des Umsatzes in Zukunftstechnologien.

Zum weiteren Kurs von ZEISS sagte er: „ZEISS ist mit seiner Unternehmensstrategie gut gerüstet, um sich weiter dynamisch zu entwickeln. Da können wir durchaus zuversichtlich in die Zukunft schauen. Für das aktuelle Geschäftsjahr haben wir die 6-Milliarden-Euro-Marke bei einer stabilen EBIT-Rendite fest im Visier“.

Entwicklung der Region und des Standortes Jena
Bodo Ramelow, Ministerpräsident des Freistaats Thüringen, und Dr. Thomas Nitzsche, Oberbürgermeister der Stadt Jena, überbrachten ZEISS ihre Grußworte.

Der Ministerpräsident betonte die Rolle von ZEISS in Thüringen: „Die Zeissianer mit ihren technologischen Antworten auf viele Trends und Herausforderungen unserer Zeit sind und bleiben im Freistaat Thüringen und in ganz Ostdeutschland wichtige Impulsgeber für Wirtschaft, Wissenschaft und Gesellschaft. Durch seine Internationalität und Brückenfunktion zwischen Ost und West in Deutschland, aber auch über die Kontinente hinweg, hat das Unternehmen eine Vorbildfunktion für die Region und das Land. Nur so kann auch ein weltoffenes und bewegliches Thüringen erfolgreich sein.“

Jenas Oberbürgermeister brachte in seiner Rede noch einmal die Freude über die Investition am Standort Jena zum Ausdruck: „Das Großprojekt von ZEISS wird für die Stadt selbst und ihre Entwicklung wie eine Initialzündung sein und viele positive Folgewirkungen nach sich ziehen. Der Hightech-Standort wird sich mit Modernität und Eigenständigkeit, aber auch mit großer Offenheit in das Stadtbild einfügen und eindrucksvoll zeigen, dass Jena seine Zukunft als Forschungs-, Wissenschafts- und Wirtschaftsstandort fest im Blick hat. Ich freue mich, dass sich ZEISS über sein gesellschaftliches Engagement hinaus auch mit dieser Entscheidung zum Neubau zu seinem Gründungsstandort bekennt.“

Im Zeichen der Mondlandung
Der Abend stand dann unter dem Motto Raumfahrt: ZEISS war vor 50 Jahren bei der Apollo-11-Mission mit einem speziell entwickelten Objektiv für die Fotoaufnahmen dabei. Eine Replik der Kamera war in einer für die Veranstaltung entworfenen Ausstellung zur Mondlandung zu sehen.
Außerdem diskutierten die beiden Raumfahrer Jähn und Ewald mit Kaschke über ihre Missionen im All.

Jähn flog am 26. August 1978 als erster Deutscher in den Weltraum. Während der 124 Erdumkreisungen führte er an Bord der sowjetischen Raumstation Saljut 6 Experimente durch. Im Bereich Fernerkundung kam die Multispektralkamera MKF 6 von ZEISS zum Einsatz.
Ewald, der heute an der Universität Stuttgart für das Fachgebiet Astronautik und Raumstationen am Institut für Raumfahrtsysteme tätig ist, nahm vom 10. Februar bis 2. März 1997 an der zweiten deutsch-russischen Mission teil. Dabei flog er als Wissenschaftskosmonaut zur Raumstation MIR.

Prof. Dr. Michael Kaschke, Dr. Sigmund Jähn und Prof. Dr. Reinhold Ewald (von rechts) zu Besuch in der anlässlich des 50-jährigen Jubiläums entwickelten Sonderausstellung „See beyond. Go beyond. The journey to the moon and ZEISS.“

Ansprechpartner für die Presse
Gudrun Vogel
Standort Jena
Tel.: +49 3641 64-2770
gudrun.vogel@zeiss.com

Über ZEISS
ZEISS ist ein weltweit führendes Technologieunternehmen der optischen und optoelektronischen Industrie. In den vier Sparten Industrial Quality & Research, Medical Technology, Consumer Markets und Semiconductor Manufacturing Technology erwirtschaftete die ZEISS Gruppe zuletzt einen Jahresumsatz von über 5,8 Milliarden Euro (Stand: 30.9.2018).

ZEISS entwickelt, fertigt und vertreibt für seine Kunden hochinnovative Lösungen für die industrielle Messtechnik und Qualitätssicherung, Mikroskopielösungen für Lebenswissenschaften und Materialforschung sowie Medizintechniklösungen für Diagnostik und Therapie in der Augenheilkunde und der Mikrochirurgie. ZEISS steht auch für die weltweit führende Lithographieoptik, die zur Herstellung von Halbleiterbauelementen von der Chipindustrie verwendet wird. ZEISS Markenprodukte wie Brillengläser, Fotoobjektive und Ferngläser sind weltweit begehrt und Trendsetter.

Mit diesem auf Wachstumsfelder der Zukunft wie Digitalisierung, Gesundheit und Industrie 4.0 ausgerichteten Portfolio und einer starken Marke gestaltet ZEISS die Zukunft weit über die optische und optoelektronische Branche hinaus. Grundlage für den Erfolg und den weiteren kontinuierlichen Ausbau der Technologie- und Marktführerschaft von ZEISS sind die nachhaltig hohen Aufwendungen für Forschung und Entwicklung.

Mit rund 30.000 Mitarbeitern ist ZEISS in fast 50 Ländern mit rund 60 eigenen Vertriebs- und Servicestandorten, mehr als 30 Produktions- sowie rund 25 Entwicklungsstandorten weltweit aktiv. Hauptstandort des 1846 in Jena gegründeten Unternehmens ist Oberkochen, Deutschland. Alleinige Eigentümerin der Dachgesellschaft, der Carl Zeiss AG, ist die Carl-Zeiss-Stiftung, eine der größten deutschen Stiftungen zur Förderung der Wissenschaft.

Weitere Informationen unter www.zeiss.de

ZEISS in Jena

Am Standort Jena sind mit Semiconductor Manufacturing Technology, Medical Technology und Research Microscopy Solutions, dem Bereich Planetarien sowie der zentralen Forschung von ZEISS alle vier Sparten vertreten. Jena ist zudem der Sitz der zentralen Servicegesellschaft für Produktionsleistungen der ZEISS Gruppe.

]]>
news-1240Fri, 06 Jul 2018 11:22:15 +020013th DLP(r) Technology Symposium - Save the Date / Call for Presentationshttps://photonicnet.de/The 13th International Symposium on Emerging and Industrial TI DLP® Technology Applications will be held at Congress Park CPH in Hanau (near Frankfurt, Germany) on October 23, 2018. The DLP Symposium is the established platform that aims to promote the dialogue and discussion between engineers, researchers, users and manufacturers/distributors in the field of innovative advanced light control optical solutions that can serve new markets. XIII International Symposium on Emerging and Industrial TI DLP® Technology Applications

We are glad to announce that the 13th International Symposium on Emerging and Industrial TI DLP® Technology Applications will be held at Congress Park CPH in Hanau (near Frankfurt, Germany) on October 23, 2018. The DLP symposium is the established platform that aims to promote the dialogue and discussion between engineers, researchers, users and manufacturers/distributors in the field of innovative advanced light control optical solutions that can serve new markets. The event is jointly organized by OpSys Project Consulting and the photonics innovation network Optence e.V.

CALL FOR PRESENTATIONS


DLP chips and associated development platforms are enabling many exciting new systems and applications beyond traditional display technologies. By bringing together scientists, technologists, and developers, the goal of this conference is to highlight new and interesting means of applying DLP technology to end applications within these emerging markets:

Topics of interest include, but are not limited to:

  • 3D machine vision (automated optical inspection (AOI), PCB quality inspection, robotics vision, factory automation, dental scanning, medical imaging and biometrics)
  • 3D printing (rapid prototyping, direct manufacturing, and tooling & casting)
  • Spectroscopy (oil & gas analysis, food & drug inspection, water & air quality, and chemical & material identification)
  • Lithography (printed circuit boards, flat panels, computer-to-plate printing, and laser marking)
  • DLP Pico™ video and data display (including smartphones & tablets, pico projectors, wearable displays, smart home displays, aftermarket head-up display, commercial gaming displays, and mobile smart TVs)
  • Technical aspects on subsystems and components comprised in DLP Systems (including light sources, optics, electronics, new product introductions)

Why submit a paper?

Get a large impact in the advanced light control community: Some 120 attendees and contributors from all over Europe, USA and Asia made the DLP symposium a huge success in 2015!

Please submit your contribution prior to August 15, 2018
to OpSys Project Consulting | Alfred Jacobsen |office(at)opsysconsult.com

Exhibition Space Offer

Seize the opportunity and register now for a table top presentation booth at the DLP Symposium exhibition area. Please find here information for the exhibition conditions including an application form. Please return order form by scanned copy to machemer(at)optence.de. Or confirm your requirements and preferences directly by e-mail.

]]>